CS 4530: Fundamentals of Software Engineering

Module 15: Software Engineering & Security

Jon Bell, Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2024, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module

* By the end of this module, you should be able to:
* Define key terms relating to software/system security

* Describe some of the tradeoffs between security and
other requirements in software engineering

* Explain 5 common vulnerabilities in web applications
and similar software systems, and describe some
common mitigations for each of them.

* Explain why software alone isn’t enough to assure
security

Outline of this lecture

1. Definition of key vocabulary

2. Some common vulnerabilities, and possible
mitigations

3. Getting security right is about people as well as
software.

Security: Basic Vocabulary (1)

 Security is a set of non-functional requirements
(sometimes called “CIA”):

* Confidentiality: is information disclosed to
unauthorized individuals?

* Integrity: is code or data tampered with?
* Availability: is the system accessible and usable?

Security: Basic Vocabulary (2)

* Asset: something of value that is the subject of a
security requirement

* Threat: potential event that could compromise a
security requirement

e Security architecture: a set of mechanisms and
policies that we build into our system to mitigate
risks from threats

Security: Basic Vocabulary (3)

* Vulnerability: a characteristic or flaw in system
design or implementation, or in the security
procedures, that, if exploited, could result in a
security compromise

* Exploit: a technique or method for exploiting a
vulnerability

e Attack: realization of a threat

* Mitigation: a technique for making an attack less
likely, more expensive, or less valuable to an
attacker.

Security isn't always free

* |n software, as in the real world...

}
=0
* You JUSt moved to a new house someone JUSt = €

moved out of it. What do you do to protect yoi=" AE?E
belongings/property? AR

* Do you change the locks?
* Do you buy security cameras?

* Do you hire a security guard?

* Do you even bother locking the door?

Security is about managing risk

* Increasing security might:
* Increase development & maintenance cost
* Increase infrastructure requirements
* Degrade performance

e But, if we are attacked, increasing security might
also:
* Decrease financial and intangible losses

* How likely do we think we are to be attacked in
some particular way?

Threat modeling can help us analyze the
Issues

 What is being defended?

* What malicious actors exist and what attacks might
they employ? fhrest

Threat Modeling (&

e What value can an attacker extract from a
vulnerability?

 Who do we trust? What parts of the system do we m =
trUSt? —~ Vulnerability

Application

* What can we do in case of attack? “ Vulnerability

Response Response

A Baseline Threat Model

* Trust:

* Developers writing our code (at least for
the code they touch)

e Server running our code

* Popular dependencies that we use and
update

* Don’t trust:
e Code running in browser
* Inputs from users

* Other employees (employees should have
access only to the resources they need)

A Baseline Security Policy

* Encrypt all data in transit, sensitive data at rest
e Use multi-factor authentication

* Use encapsulated zones/layers of security

 Different people have access to different resources
* Principle of Least Privilege

* Log everything! (employee data accesses/modifications)
(maybe)

* Do regular, automatic, off-site backups

* Bring in security experts early for riskier situations

How much should you log?

Hello Professor @Mitch Wand,
| received an email from a student saying their Mid Term grade was 75points and it has suddenly changed to 65. | have not
made any changes to the grade, but were there any adjustments made to the grades recently?

v Mitch Wand This was their exam grade? | have not touched any grades.

12

Backups can mitigate the risks of a
ransomware attack

Your personal files are encrypted

You have 5 days to submit the payment!!!

To retrieve the Private key you need to pay

13

Off-site backups mitigate the risks of natural
disasters

14

In the remainder of this module, we will
discuss 5 major classes of vulnerabilities

* Vulnerability 1: Code that runs in an untrusted
environment

* Vulnerability 2: Untrusted Inputs

* Vulnerability 3: Bad authentication (of both sender
and receiver!)

* Vulnerability 4: Malicious software from the
software supply chain

* Vulnerability 5: Failure to apply security policy.

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

Vulnerability 1 Example: authentication code
in @ web application

function checkPassword(inputPassword:
string){
if(inputPassword === "letmein'){

Front End return true;
}

return false;

Cur‘ses! Foﬂet’ Aga'm! 1 é

Fix: Move code to back
end (duh!) Back End

Who would do such a silly thing?

New Messages

Want to hear something
mindblowing about gradescope?

If you set a test visibility policy, it
sends the data over to the client
and does the hiding **client-side**
using JS 19:06

Some intrepid students in my online
MS class figured this out and were
able to recover their hidden test
scores

Tests that we'd set visibility to after
the due date 19:07

17

Vulnerability 2: Data controlled by a user

flowing into our trusted codebase

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;-~ 7

~OH.YES LUITTLE
BOBBY TABLES,
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
: TOSANMIZE YOUR
DATARASE INPUTS.

https://xkcd.com/327/

https://xkcd.com/327/

Example: code injection

String query = "SELECT * FROM accounts WHERE

name="" + request.getParameter(“name") + "'";
Parameter
Constructed Query Effect
name
Alice SELECT * FROM accounts Select a single
WHERE name=°‘Alice’; account

SELECT * FROM accounts
WHERE name=°‘Alice 0’Neal’;

Alice 0O’Neal SQL Error

SELECT * FROM accounts
WHERE name=¢5’ OR 1°=°1°; Select all accounts

* OWASP AOB:ZOZl-IniectionQQPSYZ

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/Top10/A03_2021-Injection/

Example: Cross-site scripting (XSS)

app.get('/transcripts/:id', (req, res) => {
// req.params to get components of the path
const {id} = req.params;
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {
res.status(404).send("No student with id = ${id});

/_\ /transcripts/4 Tru Sted

}
Server {
}

res.status(200).send(theTranscript);

[NN) @ https:/frest-example.covey.tov. X =+
& C' @ rest-example.covey.town/trans... Y& e :

{"student":{"studentID":4, "studentName":"casey"}, "grades":
[{"course":"DemoClass","grade":100}]}

Example: Cross-site scripting (2)

app.get('/transcripts/:id', (req, res) => {
// req.params to get components of the path
const {id} = req.params;
const theTranscript = db.getTranscript(parseInt(id));

Trusted if (theTranscript === undefined) {

[transcripts/%3Ch1%3e... res.status(404).send("No student with id = ${id});

res.status(200).send(theTranscript);

Server)
}

<h1l>Congratulations!</h1>

You are the 1000th visitor to the transcript site! You have been selecte
to receive a free iPad. To claim your prize click herel

<script language=“javascript”>
document.getRootNode().body.innerHTML=
'<h1>Congratulations!</h1>You are the 1000th visitor to the transcript sit
You have been selected to receive a free iPad. To claim your prize click here!’;
alert('You are a winner!’);

</script>

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Example: Cross-site scripting (3)

app.get('/transcripts/:id', (req, res) => {
Rick Astley-Never Gonna Give You Up he path

ipt(parseInt(id));

dth id = ${id}’);

/transcripts/%3Ch1%3e...

r to the transcript site! You
ive a free iPad. To claim your

[NON] C nhttps:/jrest-example.covey.tov X + [NON J ()

< X @ rest-example.covey.town/trans... Yr W% e : & C a
com/watch?v=DLzxrzFCyOs'>click

rest-example.covey.town says Congratl
You are a winner! ~ipt”>

/.innerHTML=

fou are the 1000th visitor to
ive been selected to receive a
~ize <a

0:19/333 «f4 B :om/watch?v=DLzxrzFCyOs">click

You are the 1000th

“ receive a free iPad.

alert('You are a winner!’);
</script>

‘ Waiting for rest-example....

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E
https://www.youtube.com/watch?v=DLzxrzFCyOs
https://www.youtube.com/watch?v=DLzxrzFCyOs

A code injection attack (in Apache struts)
cost Equifax $1.4 Billion

@ English ¢ Return to equifax.com»

2017 Cybersecurity Incident &
Important Consumer Ipfarmatian

NEWS

Equifax Says Cybersecurity Breach Has Cost
$1.4 Billion

EMMA HURT * MAY 10, 2019 o o e

_7

Need help? Contact Us

CVE-2017-5638 Detail
Current Description

The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts, which allows remote attackers to €Xecute arbitrary commands via a

crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in
March 2017 with a Content-Type header containing a #cmd= string.

The Log4] code injection vulnerability
compromised many networks in 2021

v
A}
\
A1y VY s e owow
)
\

Extremely Critical Log4J Vulnerability Mar 8, 2022

e e APT41 COMPROMISED
SIXU.S. STATH

‘‘‘‘‘‘

CVE-2021-44228 Detail
Current Description

Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log
messages, and parameters do not protect against attacker controlled LDAP and other JNDI related €Ndpoints. An attacker who
can control log messages or log message parameters can execute arbitrary code loaded from

The Apache software Fol LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled

actively exploited zero-dal by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this
Apache Log4j Java-based vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.
execute malicious code g https://nvd.nist.gov/vuln/detail/CVE-2021-44228

systems.

The APTA41 group compromised af least six U.S. state government
networks between May and February in a “deliberate campaign” that
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html reflects new attack vectors and retooling by the prolific Chinese state-
httpsydasaradgrédpcipher/apt4l-compromised-six-state-government-networks

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Mitigating against code injection attacks

* Use tools like TSOA to automatically generate safe
code.

 Manually sanitize inputs to prevent them from being
executable

e Avoid unsafe query languages (e.g. SQL, LDAP,
language-specific languages like OGNL in java). Use
“safe” subsets instead.

* Avoid use of languages (like C or C++) that allow code
to construct arbitrary pointers or write beyond a valid
array index

 eval() in JS — executes a string as JS code

Vulnerability 3: Bad Authentication

client page
(“Ave ry”)

HTTP Request

Server

HTTP Response

Server
(“Amazon”)

* How does Amazon know that this request is coming

from Avery?

* How does Alice know that this request is coming

from Amazon?

26

How does Amazon know that this request is
coming from Avery?

* Password
» Establishes that the request is coming from someone
who knows Avery’s password

 2-factor authentication
* Something the user has (physical key, bank card)
* Something the user knows (password, PIN)
* Something the user is (biometrics, address history, etc.)

27

How does Avery know that this request is
coming from Amazon?

e SSL is a protocol for encryption that uses

asymmetric cryptography
* Each party has a public key and a private key
* Messages encrypted with a given public key can rvatekey publickey

only be decrypted by matching private key

* Messages signed with a given private key can be
validated by anyone with the public key

* A third-party can endorse that a public key is held amazon.com certificate
by an entity and produce a certificate

28

http://amazon.com/
http://amazon.com/
http://amazon.com/

Encrypt messages with a public key
to ensure confidentiality

Plain text Encrypted Plain text
Message Message Message

Encrypt messages with a private
key to ensure integrity

Plain text Signed Plain text
Message Message Message

Certificate Authorities associate public keys
with real-world entities

e CA’s are trusted entities (their public keys are
distributed along with your OSS).

* To acquire a certificate, Amazon.com will share their
public key and some real-world proof that they are
amazon.com to the CA.

* The CA locks Amazon’s public key with its own private
key. This is called a “certificate”.

 When we visit amazon.com, it presents its certificate to
our browser.

e Our browser unlocks the certificate with the CA’s public .
key, thus getting amazon’s public key. Integ”ty!

* Because we trust the CA, we can trust that this public
key is really Amazon.com.

31

Certificate Authorities issue SSL Certificates

Amazon

Certificate Authority

m

amazon.com certifica
(AZ’s public key + CA’s

m

azon.com certificate
s public key + CA’s sig)

Some real-world proof
that we are really
amazon.com

32

http://amazon.com/
http://amazon.com/
http://amazon.com/
http://amazon.com/
http://amazon.com/

Certificate Authorities are Implicitly Trusted

* For this to work, we had to
already know the CA's public
key

)) Safari is using an encrypted connection to cs.gmu.edu.

o T h e re a re a S m a I | S et Of “ ro Ot 3 Encryption .with a digital certificate keeps informaticon private as it’s sent to or from the
CA’s (think: root DNS servers) L@ o

o Eve ry CO m p u te r/b rOWS e r is . USERTrust RSA Certification Authority

L = InCommeoen RSA Server CA

shipped with these root CA) cagmueds
p u b I i C keys (// Ezﬁ?:yﬁ::ommon RSA Server CA

Expires: Saturday, December 1, 2018 at 6:59:59 PM Eastern Standard Time
@ This certificate is valid

=

> Trust
» Details

? Hide Certificate

J
~

What happens if a CA is compromised, and
issues invalid certificates?

Security

Comodo-gate hacker brags about
forged certificate exploit

Tiger-blooded Persian cracker boasts of mighty
exploits

Security

Fuming Google tears Symantec a new
one over rogue SSL certs

We've got just the thing for you, Symantec ...

By lain Thomson in San Francisco 29 Oct 2015 at 21:32 36() SHAREY

ACTIVE 'S
o o Anusepuc Pain R
o ch w'"' Al
Lido AC“V
(3 IN(;R
£
nett Benzakn. ENTS

You can do this for your website for free

* letsencrypt.com

n Let’s Encrypt Documentation Get Help Donate - About Us ~ Languages @ v

A nonprofit Certificate Authority providing TLS
certificates to 300 million websites.

We were awarded the Levchin Prize for Real-World Cryptography! Learn more

GetStarted] [Sponsor

Other mitigations for access-control threats

* Implement multi-factor authentication

* Make sure passwords are not weak, have not been
compromised.

* Apply per-record access control
* Principle of least privilege

* Harden pathways for account creation, password
reset.

* Use an expert vendor, like AuthO, to handle login
* They might do it better than you can.

Vulnerability 4: Supply-Chain Attacks

* Do we trust our own code?
* Third-party code provides an attack vector

The software supply chain has many points
of weakness

g B

Example: the eslint-scope
attack (2018)

* On 7/12/2018, a malicious version of
eslint-scope was published to npm.

* eslint-scope is a core element of eslint,
SO many many users were affected.

* Let’s analyze this...

@ ESLint Q Searchthedocs... User guide~ Devd

Postmortem for Malicious
Packages Published on July 12th,
2018

Summary

On July 12th, 2018, an attacker compromised the npm account of an ESLint maintainer
and published malicious versions of the eslint-scope and eslint-config-
eslint packages tothe npm registry. On installation, the malicious packages
downloaded and executed code from pastebin.com which sent the contents of the
user's .npmrc file to the attacker. An .npmrc file typically contains access tokens for
publishing to npm.

The malicious package versions are eslint-scope@3.7.2 and eslint-config-
eslint@5.0.2, both of which have been unpublished from npm. The pastebin.com
paste linked in these packages has also been taken down.

npm has revoked all access tokens issued before 2018-07-12 12:30 UTC. As a result, all
access tokens compromised by this attack should no longer be usable.

The maintainer whose account was compromised had reused their npm password on
several other sites and did not have two-factor authentication enabled on their npm
account.

We, the ESLint team, are sorry for allowing this to happen. We
hope that other package maintainers can learn from our
mistakes and improve the security of the whole npm ecosystem.

https://eslint.org/blog/2018/07/postmortem-for-

malicious-package-publishes/

39

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

This incident leveraged several small
security failures

* An eslint-scope developer used their same password on
another site.

 The other site did not use 2FA
e Password was leaked from the other site.
» Attacker created malicious version of eslint-scope

* Many users did not use package-lock.json, so their
packages automatically installed the new (evil) version.

* The malicious version sent copies of the user’s .npmrc
to the attacker. This file typically contains user tokens.

e Estimated 4500 tokens were leaked and needed to be
revoked.

40

Example: the
SolarWinds attack

(2020)

* Many networks
compromised

 Not discovered for
months

HARD LESSONS OF THE SOLARWINDS HACK

Cybersecurity reporter Joseph Menn on the massive
breach the US didn't see coming

By | | Jan 26, 2021, 9:13am EST

f e @ SHARE

n December, details came out on one of the most massive
breaches of US cybersecurity in recent history. A group of
hackers, likely from the Russian government, had gotten

into a network management company called SolarWinds and
infiltrated its customers’ networks. This access was then used
to breach everything from Microsoft to US government
agencies, including the US Treasury and departments of
Homeland Security, State, Defense, and Commerce.

This problem was recognized ages ago

* Ken Thompson (the Unix guy) - 1984

Reflections on Trusting Trust

Towhat extent should one trust statement that o program is fee of Trojan
Hores? erhaps i i more important to st the people who write he
sftuare

* Showed how to plant a bug in a compiler, so

that any program compiled by that compiler
would contain a backdoor.

The final step is represented in Figure 3.3. This simply adds a i P e e
second Trojan horse to the one that already exists. The second

pattern 1s aimed at the C compiler. The replacement code is a
Stage I self-reproducing program that inserts both Trojan horses
into the compiler. This requires a learning phase as in the Stage
IT example. First we compile the modified source with the
normal C compiler to produce a bugged binary. We install this
binary as the official C. We can now remove the bugs from the A
source of the compiler and the new binary will reinsert the bugs -
whenever it is compiled. Of course, the login command will

remain bugged with no trace in source anywhere

T STAGE]
[—
e

el h
"l"‘ Mo precely e, e prob

winner
Figure 1 shaws a sel-eproducing progrem i the C*
;’w ‘progeamming lnguag,(The puris will e Ut the

o but vl rodu s leproducing progm) This .
M ylsmuch wina e, bt demenstts

A 2021 NCSU/Microsoft found that many of the
top 1% of npm packages had vulnerabilities

* Package inactive or deprecated, yet still in use
* No active maintainers

e At least one maintainer with an inactive
(purchasable) email domain

* Too many maintainers or contributors to make
effective maintenance or code control

* Maintainers are maintaining too many packages

* Many statistics/combinations: see the paper for
details.

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan
Murphy, Chandra Maddila, Laurie Williams https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

Threat Mitigation: Process-based problems
need process-based solutions

e External dependencies

. Ahudit all dependencies and their updates before applying
them

* In-house code

* Require developers to sign code before committing, require
2FA for signing keys, rotate signing keys regularly

* Build process

e Audit build software, use trusted compilers and build chains
* Distribution process

* Sign all packages, protect signing keys
* Operating environment

* |solate applications in containers or VMs

Supply-chain risks include more than just

software.

intertek .

Total Quality. Assured.
Home / Industries & Services / Auditing / Business Assurance / Supply Chain Security

Supply Chain Security

In today’s global marketplace, it is more important than

ever to have a transparent view into your supply chain, no

matter how remote suppliers may be from where you

actually conduct your business. As a result, suppliers and

manufacturers need solutions in place to demonstrate
compliance in a number of areas dictated by today’s
business climate.

Supply Chain Assessments - Using a series of risk-based assessment tools and audit solutions to
evaluate and benchmark suppliers, supply chain assessments help global companies manage and track
the performance in their supply chains. The assessments measure business risk, capacity and
capabilities, workplace conditions, product quality and safety, security and environmental
sustainability.

In order to demonstrate enforcement of and compliance to international supply chain security

by rdmrrde rrarrnrs s e vt temd vt ittt temlis memrmmee e e et e il rmldlmmd s memed Al v e

40

Your suppliers' risks are your risks.

* MOVEit is a file transfer program owned by
Progress Software.

* Over 2500 organizations used the program to move
sensitive personal data.

* They were attacked in May 2023.

* Prof. Wand says: my bank didn't use MOVEit, but
they used a supplier who did.

* Now, they have to take expensive steps to offer me
identity-protection services, etc.

46

Vulnerability 5: Failure to Apply Security

Policy

SECURITY ADVICE

152 Simple Steps to Stay Safe Online:

Security Advice for Non-Tech-Savvy Users

Robert W. Reeder, lulia lon, and Sunny Consolvo | Google

Users often don’t follow expert advice for staying secure online, but the reasons for users’ noncompliance
are only partly understood. More than 200 security experts were asked for the top three pieces of advice
they would give non-tech-savvy users. The results suggest that, although individual experts give thoughtful,
reasonable answers, the expert community as a whole lacks consensus.

IEEE Security & Privacy 15:5 (2017)

47

https://ieeexplore.ieee.org/document/8055663

Other mitigations for access-control threats

thentication

* Make sure passwords are not weak, have not been
compromised.

* Apply per-re

. But.how do you get your
* Hafden accﬂ@\‘f@l@%éﬁw@@l do' all'this?

* Use an expert vendor, like AuthO, to handle login
* They can do it better than you can.

Outline of this lecture

1. Definition of key vocabulary

2. Some common vulnerabilities, and possible
mitigations

3. Getting security right is about people as well as
software.

49

David Blank-Edelman (former head of
Systems at Khoury)

“The solution is in
front of the screen,
not behind it”

A security architecture must include a
security culture

* Security architecture is a set of mechanisms and
policies that we build into our system to mitigate
risks from threats

Example mechanism: secret detection

* Recall: SSL only is effective if the
private key... remains private

* Applications may have many other Keep secrets out
secret values (e.g. access tokens B oo OC

for other services)
e Tools like GitGuardian

B/ S/ H/ wagU?ﬁ\" 66degrees

automatically detect secrets in el e N
repositories

Scan. Detect. Remediate.

our software development lifecycle with
enterprise-grade secrets detection inate blind spots

52

Mechanisms aren’t enough: Do
developers keep secret keys secret?

* Industrial study of secret detection tool in a large software services
company with over 1,000 developers, operating for over 10 years

* What do developers do when they get warnings of secrets in

repository?
* 49% remove the secrets; 51% bypass the warning

* Why do developers bypass warnings?

Is it a management
problem or a tool
problem?

* 44% report false positives, 6% are already exposed secrets, remaining are
“development-related” reasons, e.g. “not a production credential” or “no

significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”

Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams https://link.springer.com/article/10.1007/s10664-021-10109-y

https://link.springer.com/article/10.1007/s10664-021-10109-y

Elements of a security culture

* Make security a regular part of the process.

* Include security tools as part of the build/release
process

* Tools may have false positives and false negatives

* Educate developers about when how to recognize
positives that look false, but aren’t

* Include security review as regular part of code review

54

Learning Objectives for this Module

* You should now be able to:
* Define key terms relating to software/system security

* Describe some of the tradeoffs between security and
other requirements in software engineering

* Explain 5 common vulnerabilities in web applications
and similar software systems, and describe some
common mitigations for each of them.

* Explain why software alone isn’t enough to assure
security

