
CS 4530: Fundamentals of Software Engineering

Module 15: Software Engineering & Security
Jon Bell, Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2024, released under CC BY-SA

1

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module
• By the end of this module, you should be able to:
• Define key terms relating to software/system security
• Describe some of the tradeoffs between security and

other requirements in software engineering
• Explain 5 common vulnerabilities in web applications

and similar software systems, and describe some
common mitigations for each of them.

• Explain why software alone isn’t enough to assure
security

Outline of this lecture
1. Definition of key vocabulary
2. Some common vulnerabilities, and possible

mitigations
3. Getting security right is about people as well as

software.

3

Security: Basic Vocabulary (1)
• Security is a set of non-functional requirements

(sometimes called “CIA”):
• Confidentiality: is information disclosed to

unauthorized individuals?
• Integrity: is code or data tampered with?
• Availability: is the system accessible and usable?

4

Security: Basic Vocabulary (2)
• Asset: something of value that is the subject of a

security requirement
• Threat: potential event that could compromise a

security requirement
• Security architecture: a set of mechanisms and

policies that we build into our system to mitigate
risks from threats

5

Security: Basic Vocabulary (3)
• Vulnerability: a characteristic or flaw in system

design or implementation, or in the security
procedures, that, if exploited, could result in a
security compromise
• Exploit: a technique or method for exploiting a

vulnerability
• Attack: realization of a threat
• Mitigation: a technique for making an attack less

likely, more expensive, or less valuable to an
attacker.

6

Security isn't always free
• In software, as in the real world…
• You just moved to a new house, someone just

moved out of it. What do you do to protect your
belongings/property?
• Do you change the locks?
• Do you buy security cameras?
• Do you hire a security guard?
• Do you even bother locking the door?

Security is about managing risk
• Increasing security might:
• Increase development & maintenance cost
• Increase infrastructure requirements
• Degrade performance

• But, if we are attacked, increasing security might
also:
• Decrease financial and intangible losses

• How likely do we think we are to be attacked in
some particular way?

Threat modeling can help us analyze the
issues
• What is being defended?
• What malicious actors exist and what attacks might

they employ?
• What value can an attacker extract from a

vulnerability?
• Who do we trust? What parts of the system do we

trust?
• What can we do in case of attack?

A Baseline Threat Model
• Trust:
• Developers writing our code (at least for

the code they touch)
• Server running our code
• Popular dependencies that we use and

update
• Don’t trust:
• Code running in browser
• Inputs from users
• Other employees (employees should have

access only to the resources they need)

A Baseline Security Policy

• Encrypt all data in transit, sensitive data at rest
• Use multi-factor authentication
• Use encapsulated zones/layers of security
• Different people have access to different resources
• Principle of Least Privilege

• Log everything! (employee data accesses/modifications)
(maybe)
• Do regular, automatic, off-site backups
• Bring in security experts early for riskier situations

How much should you log?

12

Backups can mitigate the risks of a
ransomware attack

13

Off-site backups mitigate the risks of natural
disasters

14

In the remainder of this module, we will
discuss 5 major classes of vulnerabilities
• Vulnerability 1: Code that runs in an untrusted

environment
• Vulnerability 2: Untrusted Inputs
• Vulnerability 3: Bad authentication (of both sender

and receiver!)
• Vulnerability 4: Malicious software from the

software supply chain
• Vulnerability 5: Failure to apply security policy.

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

We control this

User controls this

Vulnerability 1 Example: authentication code
in a web application

function checkPassword(inputPassword:
string){
if(inputPassword === 'letmein'){
return true;

}
return false;

}

Front End

Trust boundary

Fix: Move code to back
end (duh!)

Curses! Foiled Again!

Back End

Who would do such a silly thing?

17

Vulnerability 2: Data controlled by a user
flowing into our trusted codebase

https://xkcd.com/327/

https://xkcd.com/327/

Example: code injection

• OWASP A03:2021-Injection

String query = "SELECT * FROM accounts WHERE
name='" + request.getParameter(“name") + "'";

Parameter
name Constructed Query Effect

Alice SELECT * FROM accounts
WHERE name=‘Alice’;

Select a single
account

Alice O’Neal SELECT * FROM accounts
WHERE name=‘Alice O’Neal’; SQL Error

5’ OR ‘1’=‘1 SELECT * FROM accounts
WHERE name=‘5’ OR ‘1’=‘1’; Select all accounts

OOPS!

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://owasp.org/Top10/A03_2021-Injection/

app.get('/transcripts/:id', (req, res) => {
// req.params to get components of the path
const {id} = req.params;
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {
res.status(404).send(`No student with id = ${id}`);

}
{
res.status(200).send(theTranscript);

}
});

/transcripts/4

Example: Cross-site scripting (XSS)

Trusted
Server

Example: Cross-site scripting (2)

/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {
// req.params to get components of the path
const {id} = req.params;
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {
res.status(404).send(`No student with id = ${id}`);

}
{
res.status(200).send(theTranscript);

}
});

<h1>Congratulations!</h1>
You are the 1000th visitor to the transcript site! You have been selected

to receive a free iPad. To claim your prize click here!

<script language=“javascript”>
document.getRootNode().body.innerHTML=
'<h1>Congratulations!</h1>You are the 1000th visitor to the transcript site!
You have been selected to receive a free iPad. To claim your prize click here!’;
alert('You are a winner!’);
</script>

Trusted
Server

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Example: Cross-site scripting (3)

/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {
// req.params to get components of the path
const {id} = req.params;
const theTranscript = db.getTranscript(parseInt(id));
if (theTranscript === undefined) {
res.status(404).send(`No student with id = ${id}`);

}
{
res.status(200).send(theTranscript);

}
});

<h1>Congratulations!</h1>
You are the 1000th visitor to the transcript site! You

have been selected to receive a free iPad. To claim your
prize click
here!

<script language=“javascript”>
document.getRootNode().body.innerHTML=
'<h1>Congratulations!</h1>You are the 1000th visitor to
the transcript site! You have been selected to receive a
free iPad. To claim your prize click
here!’;
alert('You are a winner!’);
</script>

Trusted
Server

By Never Gonna Give You Up music video., Fair use,
https://en.wikipedia.org/w/index.php?curid=22192466

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E
https://www.youtube.com/watch?v=DLzxrzFCyOs
https://www.youtube.com/watch?v=DLzxrzFCyOs

A code injection attack (in Apache struts)
cost Equifax $1.4 Billion

CVE-2017-5638 Detail
Current Description
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in
March 2017 with a Content-Type header containing a #cmd= string.

The Log4J code injection vulnerability
compromised many networks in 2021

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html

CVE-2021-44228 Detail
Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log
messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who
can control log messages or log message parameters can execute arbitrary code loaded from
LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled
by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this
vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Mitigating against code injection attacks
• Use tools like TSOA to automatically generate safe

code.
• Manually sanitize inputs to prevent them from being

executable
• Avoid unsafe query languages (e.g. SQL, LDAP,

language-specific languages like OGNL in java). Use
“safe” subsets instead.
• Avoid use of languages (like C or C++) that allow code

to construct arbitrary pointers or write beyond a valid
array index
• eval() in JS – executes a string as JS code

Vulnerability 3: Bad Authentication

• How does Amazon know that this request is coming
from Avery?
• How does Alice know that this request is coming

from Amazon? 26

client page
(“Avery”)

Server
(“Amazon”)

HTTP Request

HTTP Response Server

How does Amazon know that this request is
coming from Avery?
• Password
• Establishes that the request is coming from someone

who knows Avery’s password

• 2-factor authentication
• Something the user has (physical key, bank card)
• Something the user knows (password, PIN)
• Something the user is (biometrics, address history, etc.)

27

How does Avery know that this request is
coming from Amazon?
• SSL is a protocol for encryption that uses

asymmetric cryptography
• Each party has a public key and a private key
• Messages encrypted with a given public key can

only be decrypted by matching private key
• Messages signed with a given private key can be

validated by anyone with the public key
• A third-party can endorse that a public key is held

by an entity and produce a certificate

28

amazon.com
private key

amazon.com
public key

amazon.com certificate

http://amazon.com/
http://amazon.com/
http://amazon.com/

Encrypt messages with a public key
to ensure confidentiality

29

Public Key Private Key

Plain text
Message

Encrypted
Message

Plain text
Message

Encrypt messages with a private
key to ensure integrity

30

Public KeyPrivate Key

Plain text
Message

Signed
Message

Plain text
Message

Certificate Authorities associate public keys
with real-world entities
• CA’s are trusted entities (their public keys are

distributed along with your OS).
• To acquire a certificate, Amazon.com will share their

public key and some real-world proof that they are
amazon.com to the CA.
• The CA locks Amazon’s public key with its own private

key. This is called a “certificate”.
• When we visit amazon.com, it presents its certificate to

our browser.
• Our browser unlocks the certificate with the CA’s public

key, thus getting amazon’s public key.
• Because we trust the CA, we can trust that this public

key is really Amazon.com .

31

Integrity!

Certificate Authorities issue SSL Certificates

32

Certificate AuthorityAmazon

amazon.com
public key

CA private key

amazon.com
private key

CA public key

Some real-world proof
that we are really

amazon.com

My Laptop

CA private key
amazon.com certificate

(AZ’s public key + CA’s sig)

amazon.com
public key

amazon.com certificate
(AZ’s public key + CA’s sig)

CA public key

http://amazon.com/
http://amazon.com/
http://amazon.com/
http://amazon.com/
http://amazon.com/

Certificate Authorities are Implicitly Trusted
• For this to work, we had to

already know the CA's public
key
• There are a small set of “root”

CA’s (think: root DNS servers)
• Every computer/browser is

shipped with these root CA
public keys

What happens if a CA is compromised, and
issues invalid certificates?

You can do this for your website for free
• letsencrypt.com

Other mitigations for access-control threats
• Implement multi-factor authentication
• Make sure passwords are not weak, have not been

compromised.
• Apply per-record access control
• Principle of least privilege

• Harden pathways for account creation, password
reset.
• Use an expert vendor, like Auth0, to handle login
• They might do it better than you can.

Vulnerability 4: Supply-Chain Attacks
• Do we trust our own code?
• Third-party code provides an attack vector

The software supply chain has many points
of weakness

In-house code

External
dependencies

Build process Operating
environment

Distribution
process

(including
updates)

Example: the eslint-scope
attack (2018)
• On 7/12/2018, a malicious version of

eslint-scope was published to npm.
• eslint-scope is a core element of eslint,

so many many users were affected.
• Let’s analyze this…

39
https://eslint.org/blog/2018/07/postmortem-for-
malicious-package-publishes/

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

This incident leveraged several small
security failures
• An eslint-scope developer used their same password on

another site.
• The other site did not use 2FA
• Password was leaked from the other site.
• Attacker created malicious version of eslint-scope
• Many users did not use package-lock.json, so their

packages automatically installed the new (evil) version.
• The malicious version sent copies of the user’s .npmrc

to the attacker. This file typically contains user tokens.
• Estimated 4500 tokens were leaked and needed to be

revoked.

40

Example: the
SolarWinds attack
(2020)
• Many networks

compromised
• Not discovered for

months

41

This problem was recognized ages ago

• Ken Thompson (the Unix guy) - 1984
• Showed how to plant a bug in a compiler, so

that any program compiled by that compiler
would contain a backdoor.

42

The final step is represented in Figure 3.3. This simply adds a
second Trojan horse to the one that already exists. The second
pattern is aimed at the C compiler. The replacement code is a
Stage I self-reproducing program that inserts both Trojan horses
into the compiler. This requires a learning phase as in the Stage
II example. First we compile the modified source with the
normal C compiler to produce a bugged binary. We install this
binary as the official C. We can now remove the bugs from the
source of the compiler and the new binary will reinsert the bugs
whenever it is compiled. Of course, the login command will
remain bugged with no trace in source anywhere

A 2021 NCSU/Microsoft found that many of the
top 1% of npm packages had vulnerabilities
• Package inactive or deprecated, yet still in use
• No active maintainers
• At least one maintainer with an inactive

(purchasable) email domain
• Too many maintainers or contributors to make

effective maintenance or code control
• Maintainers are maintaining too many packages
• Many statistics/combinations: see the paper for

details.
“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan
Murphy, Chandra Maddila, Laurie Williams https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

Threat Mitigation: Process-based problems
need process-based solutions
• External dependencies

• Audit all dependencies and their updates before applying
them

• In-house code
• Require developers to sign code before committing, require

2FA for signing keys, rotate signing keys regularly
• Build process

• Audit build software, use trusted compilers and build chains
• Distribution process

• Sign all packages, protect signing keys
• Operating environment

• Isolate applications in containers or VMs

Supply-chain risks include more than just
software.

45

Your suppliers' risks are your risks.
• MOVEit is a file transfer program owned by

Progress Software.
• Over 2500 organizations used the program to move

sensitive personal data.
• They were attacked in May 2023.
• Prof. Wand says: my bank didn't use MOVEit, but

they used a supplier who did.
• Now, they have to take expensive steps to offer me

identity-protection services, etc.

46

Vulnerability 5: Failure to Apply Security
Policy

47

IEEE Security & Privacy 15:5 (2017)

https://ieeexplore.ieee.org/document/8055663

Other mitigations for access-control threats
• Implement multi-factor authentication
• Make sure passwords are not weak, have not been

compromised.
• Apply per-record access control
• Principle of least privilege

• Harden account creation, password reset pathways
• Use an expert vendor, like Auth0, to handle login
• They can do it better than you can.

But how do you get your
developers to do all this?

Outline of this lecture
1. Definition of key vocabulary
2. Some common vulnerabilities, and possible

mitigations
3. Getting security right is about people as well as

software.

49

David Blank-Edelman (former head of
Systems at Khoury)

“The solution is in
front of the screen,

not behind it”

50

A security architecture must include a
security culture
• Security architecture is a set of mechanisms and

policies that we build into our system to mitigate
risks from threats
• Vulnerability: a characteristic or flaw in system

design or implementation, or in the security
procedures, that, if exploited, could result in a
security compromise
• Threat: potential event that could compromise a

security requirement
• Attack: realization of a threat

Example mechanism: secret detection
• Recall: SSL only is effective if the

private key… remains private
• Applications may have many other

secret values (e.g. access tokens
for other services)
• Tools like GitGuardian

automatically detect secrets in
repositories

52

Mechanisms aren’t enough: Do
developers keep secret keys secret?
• Industrial study of secret detection tool in a large software services

company with over 1,000 developers, operating for over 10 years
• What do developers do when they get warnings of secrets in

repository?
• 49% remove the secrets; 51% bypass the warning

• Why do developers bypass warnings?
• 44% report false positives, 6% are already exposed secrets, remaining are

“development-related” reasons, e.g. “not a production credential” or “no
significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams https://link.springer.com/article/10.1007/s10664-021-10109-y

Is it a management
problem or a tool

problem?

https://link.springer.com/article/10.1007/s10664-021-10109-y

Elements of a security culture
• Make security a regular part of the process.
• Include security tools as part of the build/release

process
• Tools may have false positives and false negatives
• Educate developers about when how to recognize

positives that look false, but aren’t
• Include security review as regular part of code review

54

Learning Objectives for this Module
• You should now be able to:
• Define key terms relating to software/system security
• Describe some of the tradeoffs between security and

other requirements in software engineering
• Explain 5 common vulnerabilities in web applications

and similar software systems, and describe some
common mitigations for each of them.

• Explain why software alone isn’t enough to assure
security

